Pengfei Ma 1,2Hu Xiao 1,2Daren Meng 1Wei Liu 1[ ... ]Zejin Liu 1,2
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies , National University of Defense Technology , Changsha 410073 , China
2 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser , National University of Defense Technology , Changsha 410073 , China
An all-fiberized and narrow-bandwidth master oscillator power amplification (MOPA) system with record output power of 4 kW level and slope efficiency of 78% is demonstrated. Tandem pumping strategy is tentatively introduced into the narrow-bandwidth MOPA system for thermally induced mode instability (TMI) suppression. The stimulated Brillouin scattering (SBS) effect is balanced by simply using one-stage phase modulation technique. With different phase modulation signals, SBS limited output powers of 336 W, 1.2 kW and 3.94 kW are respectively achieved with spectral bandwidths accounting for 90% power of ${\sim}$ 0.025, 0.17 and ${\sim}$ 0.89 nm. Compared with our previous 976 nm pumping system, TMI threshold is overall boosted to be ${>}$ 5 times in which tandem pumping increases the TMI threshold of ${>}$ 3 times. The beam quality ( $M^{2}$ factor) of the output laser is well within 1.5 below the TMI threshold while it is ultimately saturated to be 1.86 with the influence of TMI at maximal output power. Except for SBS and TMI, stimulated Raman scattering (SRS) effect will be another challenge for further power scaling. In such a high power MOPA system, multi-detrimental effects (SBS, SRS and TMI) will coexist and may be mutual-coupled, which could provide a well platform for further comprehensively investigating and optimizing the high power, narrow-bandwidth fiber amplifiers.
advanced laser technology and applications design fiber laser and applications high power laser laser amplifiers laser systems modeling narrow linewidth optimization 
High Power Laser Science and Engineering
2018, 6(4): 04000e57
Long Huang 1,2Pengfei Ma 1,2Daren Meng 1,2Lei Li 1,2[ ... ]Pu Zhou 1,2
Author Affiliations
Abstract
1 College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser, Changsha 410073, China
An all-fiberized high-average-power narrow linewidth ns pulsed laser with linear polarization is demonstrated. The laser system utilizes a typical master oscillator power amplifier (MOPA) configuration. The stimulated Brillouin scattering (SBS) is effectively suppressed due to the short fiber length and large mode area in the main amplifier, combined with the narrow pulse duration smaller than the phonon lifetime of SBS effect. A maximal output power of 466 W is obtained with a narrow linewidth of 203.6 MHz, and the corresponding slope efficiency is 80.3%. The pulse duration is condensed to be 4 ns after the amplification, corresponding to the peak power of 8.8 kW and the pulse energy of . Near-diffraction-limited beam quality with an factor of 1.32 is obtained at the output power of 442 W and the mode instability (MI) is observed at the maximal output power. To the best of our knowledge, this is the highest average output power of the all-fiberized narrow linewidth ns pulsed fiber laser with linear polarization and high beam quality, which is a promising source for the nonlinear frequency conversion, laser lidar, and so on.
all-fiber high power linear polarization mode instability narrow linewidth stimulated Brillouin scattering 
High Power Laser Science and Engineering
2018, 6(3): 03000e42

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!